Exercise 56

Use the method of Exercise 55 to compute $Q^{\prime}(0)$, where

$$
Q(x)=\frac{1+x+x^{2}+x e^{x}}{1-x+x^{2}-x e^{x}}
$$

Solution

Using the method of Exercise 55, set

$$
\begin{array}{lll}
f(x)=1+x+x^{2}+x e^{x} & \rightarrow & f(0)=1 \\
g(x)=1-x+x^{2}-x e^{x} & \rightarrow & g(0)=1 .
\end{array}
$$

Then

$$
Q(x)=\frac{f(x)}{g(x)}
$$

Take the derivative using the quotient rule.

$$
Q^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{[g(x)]^{2}}
$$

Set $x=0$.

$$
Q^{\prime}(0)=\frac{f^{\prime}(0) g(0)-g^{\prime}(0) f(0)}{[g(0)]^{2}}
$$

Take the derivative of $f(x)$ and $g(x)$.

$$
\begin{array}{lll}
f^{\prime}(x)=1+2 x+e^{x}+x e^{x} & & f^{\prime}(0)=2 \\
g^{\prime}(x)=-1+2 x-e^{x}-x e^{x} & & \rightarrow
\end{array} g^{\prime}(0)=-2
$$

Therefore,

$$
Q^{\prime}(0)=\frac{(2)(1)-(-2)(1)}{(1)^{2}}=4 .
$$

